Умберто Микелуччи - Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов (2020)

Умберто Микелуччи - Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов (2020)

Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких нейронных сетей. Описаны простые активационные функции с единственным нейроном (ReLu, сигмоида и Swish), линейная и логистическая регрессии, библиотека TensorFlow, выбор стоимостной функции, а также более сложные нейросетевые архитектуры с многочисленными слоями и нейронами.
Показана отладка и оптимизация расширенных методов отсева и регуляризации, настройка проектов машинного обучения, ориентированных на глубокое обучение с использованием сложных наборов данных.
Приведены результаты анализа ошибок нейронной сети с примерами решения проблем, возникающих из-за дисперсии, смещения, переподгонки или разрозненных наборов данных.
По каждому техническому решению даны примеры решения практических задач.

Название: Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов
Автор: Умберто Микелуччи
Год: 2020
Жанр: программирование
Издательство: БХВ-Петербург
Язык: Русский

Формат: pdf
Качество: Отсканированные страницы + слой распознанного текста
Страниц: 370
Размер: 40 MB
Скачать Умберто Микелуччи - Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов (2020)

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Другие новости по теме Умберто Микелуччи - Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов (2020):






Информация


Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.